6,206 research outputs found

    Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies

    Full text link
    We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other, while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 microsecond. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    Applications of computer graphics to aircraft synthesis

    Get PDF
    The history of the development of an aircraft configuration synthesis program using interactive computer graphics was described. A system based on time-sharing was compared to two different concepts based on distributed computing

    Effect of atomic beam alignment on photon correlation measurements in cavity QED

    Full text link
    Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-wave cavity are carried out. The delayed photon coincident rate for forwards scattering is computed and compared with the measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)] and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that a moderate atomic beam misalignment can account for the degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a single adjustable parameter--the atomic beam tilt from perpendicular to the cavity axis. Departures of the measurement conditions from the weak-field limit are discussed.Comment: 15 pages and 13 figure

    Entangled and disentangled evolution for a single atom in a driven cavity

    Full text link
    For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally-entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement

    From quantum feedback to probabilistic error correction: Manipulation of quantum beats in cavity QED

    Full text link
    It is shown how to implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling of an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory

    Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab

    Full text link
    Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 {\deg}C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.Comment: 3 pp. 13th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2011). 10-14 Oct 2011. Grenoble, Franc

    The three-site Bose-Hubbard model subject to atom losses: the boson-pair dissipation channel and failure of the mean-field approach

    Full text link
    We employ the perturbation series expansion for derivation of the reduced master equations for the three-site Bose-Hubbard model subject to strong atom losses from the central site. The model describes a condensate trapped in a triple-well potential subject to externally controlled removal of atoms. We find that the π\pi-phase state of the coherent superposition between the side wells decays via two dissipation channels, the single-boson channel (similar to the externally applied dissipation) and the boson-pair channel. The quantum derivation is compared to the classical adiabatic elimination within the mean-field approximation. We find that the boson-pair dissipation channel is not captured by the mean-field model, whereas the single-boson channel is described by it. Moreover, there is a matching condition between the zero-point energy bias of the side wells and the nonlinear interaction parameter which separates the regions where either the single-boson or the boson-pair dissipation channel dominate. Our results indicate that the MM-site Bose-Hubbard models, for M>2M>2, subject to atom losses may require an analysis which goes beyond the usual mean-field approximation for correct description of their dissipative features. This is an important result in view of the recent experimental works on the single site addressability of condensates trapped in optical lattices.Comment: 9 pages; 3 figures in color; submitted to PR

    Managing change – can HR software help?

    Get PDF
    With the pace of change in the HR and wider business environment seemingly becoming ever-faster, Human Resources teams have a real challenge on their hands to manage any resulting disruption. Employee engagement and morale is at stake, not to mention the reputation of HR, and there is significant pressure to justify the financial implications of any change projects undertaken. In this white paper, HR thought leaders therefore focus on the subject of best-practice change management, whilst providing 'real world' examples from the UK's 11th largest housing association, Together Housing. The white paper also analyses the value of technology to help streamline the potentially disruptive change management process, before sharing tips and advice for those embarking upon their own change journey

    Dramatic impact of pumping mechanism on photon entanglement in microcavity

    Full text link
    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.Comment: 6 pages, 3 figure
    • …
    corecore